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This paper addresses the problem of speckle noise on single baseline polarimetric SAR interferometry
(Pol-InSAR) on the basis of the multiplicative-additive speckle noise model. Considering this speckle
noise model, a novel filtering technique is defined and studied in terms of simulated and experimental
Pol-InSAR data. As demonstrated, the use of the multiplicative-additive speckle noise model does not
lead to a corruption of the useful information but to an improvement of its estimation. The performance
of the algorithm is analyzed in terms of the physical parameters retrieved from the filtered data, that in
this work correspond to the forest height and the ground phase. In case of experimental data, the
retrieved forest height is compared and validated against Lidar ground truth measurements.
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1. Introduction

The most prominent advantage of radar polarimetry is the possi-
bility to synthesize the received power for any polarization basis
from its measure in a single basis (Van Zyl et al., 1987). This property
was extended in Cloude and Papathanassiou (1998), in the frame of
polarimetric SAR interferometry (Pol-InSAR), to improve the quality
of an interferogram by maximizing coherence in the polarization
space. This idea was considered later on in Papathanassiou and
Cloude (2001), Cloude and Papathanassiou (2003), Ballester-
Berman et al. (2005) and Lopez-Sanchez et al. (2007) in order to
explore the complete space of interferometric coherence as a
function of polarimetry, based on the use of coherent scattering
models, demonstrating the capability to perform accurate quantita-
tive remote sensing.

The coherent nature of SAR systems lets data be affected by
speckle. Despite speckle appearing as a consequence of the scatter-
ing process, the complexity of this process, especially in case of dis-
tributed scatterers, makes necessary to consider it as a noise
component. Hence, from a stochastic point of view the information
of interest refers to the different moments that characterize the
data probability density function (pdf). In case of one-dimensional
SAR systems, the information of interest consists of the image
intensity, whereas for multidimensional SAR systems, it refers to
the coherency matrix, or to the equivalent covariance or Miiller
matrices. The importance speckle noise filtering has for a reliable
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extraction of physical information from SAR data has to be consid-
ered from two different points of view: its characterization and its
filtering.

Multidimensional homogeneous SAR data are characterized by
the multidimensional, zero-mean, complex Gaussian pdf. Though
this model fails to characterize more complex situations, as for in-
stance, presence of texture (D’Hondt et al., 2007; Grandi et al.,
2003), this model presents a good compromise to describe data
in a sufficiently accurate way with a relative mathematical simplic-
ity. Under this hypothesis, it has been demonstrated that speckle
results from the combination of multiplicative and complex addi-
tive noise sources (Lopez-Martinez and Fabregas, 2003). The esti-
mation of information, that is, speckle noise filtering, still
remains an open question in multidimensional SAR imagery, which
complexity increases with the dimensionality of the data. Preli-
minary alternatives focused on Pol-InSAR filtering have only con-
sidered the estimation of the particular complex correlation
coefficients (Vasile et al., 2004). Complete Pol-InSAR data filtering
has also been conducted (Lee et al., 2003; Foucher et al., 2006; Va-
sile et al., 2006), but without considering its effect on the quantita-
tive estimation of physical parameters.

The objective of this work is to present and to validate a new
alternative to filter speckle noise in Pol-InSAR data, based on the
multiplicative-additive speckle noise model (L6pez-Martinez and
Fabregas, 2003). In Lopez-Martinez and Fabregas (2008) it was
already demonstrated that the use of this model improves the
filtering process in case of polarimetric SAR data. As it will be
shown, the use of the previous speckle noise models results in an
improved quantitative estimation of bio- and geophysical
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parameters when compared with the results obtained when multi-
look (MLT) filtering is considered. In addition, the analysis con-
ducted in this work allows to obtain a statistical characterization
of the forest height and the ground topography parameters, when
estimated from Pol-InSAR data based on the random volume over
ground (RVoG) scattering model. Thus, the paper is structured as
follows. Section 2 lays the foundations of Pol-InSAR and introduces
a novel algorithm for Pol-InSAR data filtering. In Section 3, Section
3.1 evaluates this algorithm regarding the forest parameter retrie-
val process based on simulated Pol-InSAR data. The evaluation
continues in Section 3.2, where experimental Pol-InSAR data are
employed. The conclusions are detailed in Section 4.

2. Polarimetric SAR interferometry

An interferometric SAR (InSAR) system acquires two SAR
images S; and S, from slightly different positions in space, sepa-
rated by a baseline B. Before generating the complex interferogram,
i.e, 5155, itis necessary to co-register both SAR images and to range
filter the non-common parts of the spectra, in case of distributed
scattering, in order to increase coherence (Gatelli et al., 1994).
Then, the interferometric complex coherence is defined as

E(5:5;)
E([S1}E{[S:*}

p=Iple = M

where E{-} is the expectation value and | - | represents the absolute
value. Due to the space diversity, the phase of the interferogram
5155, 1.e., ¢ = arg{S5;S;}, contains both range and topography-depen-
dent information (Bamler and Hartl, 1998). Its accuracy depends on
the interferometric coherence, i.e., |p|, which ranges between zero
and one. A value of |p| = 0 indicates that ¢ contains no information,
whereas |p| = 1 implies that the topographic information contained
in ¢ can be estimated without error. Consequently, ¢, needs to be
estimated in order to retrieve the topographic information, that is,
speckle noise must be filtered out in the interferogram.

A Pol-InSAR system works on the basis of acquiring two fully
polarimetric data sets from slightly different positions in space.
Separately, both data sets are characterized in the same way as a
classical PolSAR data set (Cloude and Pottier, 1996). In terms of
information content, nevertheless, both may present differences
as a consequence of the existing baseline. Collectively, the charac-
terization of the higher dimensional Pol-InSAR data is performed
by a natural extension of the characterization of the lower dimen-
sional PolSAR data. However, with respect to the information con-
tent, the Pol-InSAR data contains both polarimetric sources of
information, the interferometric information and the data neces-
sary to obtain interferometric information as a function of polari-
zation. The individual polarimetric data, in the monostatic case,
may be expressed vectorially by means of the target vector (Cloude
and Pottier, 1996)

K = [Sun, V20, Suo] (2)

where T represents the vector transposition and {h,v} denotes the
orthogonal linear polarization basis, where h stands for horizontal
polarization whereas v stands for vertical polarization, respectively.
Finally, i = 1,2 refers to each one of the interferometric data sets. The
Pol-InSAR target vector is constructed from the combination of the
interferometric vectors k; fori=1,2

k= [Sl,hl’h \/jsl‘hmsl,umslhha \/552_[”,,52_1“)}7-. (3)

In case of deterministic scatterers, k according to Eq. (3) is a deter-
ministic vector. For distributed scattering, k is a random vector. In
case of homogeneous data, k is characterized by a six-dimensional,
zero-mean, complex Gaussian pdf. Under this hypothesis, the useful

Pol-InSAR information are completely characterized by the covari-
ance matrix

(4)
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where ¥ indicates complex transposition. The matrices C;; and C,
correspond to the individual polarimetric covariance matrices of
the two passes and Kj, is the polarimetric interferometric matrix.
As observed in Eq. (4), for distributed scatters, the information of
interests acquires sense only from a stochastic point of view. Conse-
quently, this information must be estimated from the data, that is,
the speckle noise must be filtered out.

Under the assumption of statistical ergodicity and local sta-
tionarity, the expectation in Eq. (4) can be estimated by means of
spatial averaging. This spatial averaging, referred to as a multilook
filtering, corresponds to the maximum likelihood estimator of the
covariance matrix C. The estimated covariance matrix

Z = (kk") = % z":qu’; (5)
q=1

is referred to as the sample covariance matrix where ( - ) is the spatial
averaging and n indicates the number of looks employed to estimate
the matrix. Considering k to be characterized by a six-dimensional,
zero mean, complex Gaussian pdf, the random matrix Z follows a
Wishart pdf (Goodman, 1963; Tough et al., 1995; Lee et al., 1994)

_ nmn|Z‘ﬂ*m

= |C|"fm(n) etr(—nC 'Z) (6)

pz(2)

where etr(X) is the exponential of the matrix trace and
m
Tun)=n"[F(n—i+1). (7)

i=1

In case of monostatic Pol-InSAR data m = 6.
2.1. Forest parameter retrieval

The complex correlation coefficient p according to Eq. (1) may
present different decorrelation contributions

p= pSystempTemporalpBaseline (8)

where psysem takes into account those decorrelating factors
depending on the acquisition and image formation processes and
Premporal accounts for decorrelation in situations where both inter-
ferometric acquisitions are not acquired simultaneously. The factor
PBaselines that collects the decorrelation due to the different look
angles, may be also split into

Pspatial = PrgPvol- (9)

The real component pg, accounts for the decorrelation introduced
by the non-common parts of the range spectra, that if filtered out,
makes pge = 1. Finally, the component py,; accounts for the decorre-
lation caused by different projections of the vertical component of
the scatter into the two interferometric datasets. This component
is directly related to the vertical scattering distribution of the scat-
ter and, therefore, represents an important source of information
about the vertical structure of the target under observation,
specially in forest applications.

The complex volume decorrelation contribution py,;, consider-
ing a vertical distribution of scatterers F(z), may be obtained, after
range spectral filtering, as

" F(z)elkdz

. — glkz0 JO 10
pvt (TVF(Z)CIZ ( )
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The parameter k, is the effective vertical interferometric wave num-
ber, that in the case of repeat-pass interferometry is expressed as

2KA0
? 7 sin(6y)

(11)

where k =2mn/A, A0 is the angular baseline and 0 is the mean inci-
dence angle. The volume decorrelation according to Eq. (10)
depends on a reference height, represented by zo, and on the height
of the vertical layer of scatterers h, with respect to z,. The function
F(z) contains all the additional information to characterize the vol-
ume under analysis. In case of the RVoG model (Papathanassiou and
Cloude, 2001; Cloude and Papathanassiou, 2003), that accounts for
both the wave extinction process occurring at the natural volume
and the effects of the surface beneath the vegetation, F(z) is defined
as follows

F(z) = my(w)esifiiﬁwz + Mg (W)o(z — 2o) (12)
where w indicates the polarization state vector and z is in the range
[20,20 + h,). In the previous expression, ¢ is the mean wave extinc-
tion coefficient and the delta function 6(z — z,) represents the phase
scattering center at height zo, accounting for the direct ground and
the possible dihedral scattering. The parameters m, and m, are the
volume and the ground scattering amplitudes, respectively. Insert-
ing Eq. (12) into Eq. (10) results in

jk,zo Py + ,U(W)
= W) ()

The product ¢, = k,zy corresponds to the phase related to the
ground topography and p(w) represents the ground-to-volume
ratio

Pyol(W)

_ 20 Mg (W)
Hw) = c0s(0p) (€27h/eos00) — 1) m,, (W)

(14)

Finally, p, corresponds to the volume decorrelation in absence of
the ground component. As it may be seen in Eq. (13), there is a
dependence of the volume decorrelation on the polarization, repre-
sented by w. The RVoG predicts a variation of the volume decorre-
lation with polarization only through the ground-to-volume
amplitude ratio, pu(w), that is, the variation with polarization of
coherence is induced by the surface beneath the vegetation. Consid-
ering Egs. (12) and (13) becomes

uw)
T py>>. (15)

— Ao
puatw) = e, + 100

If Eq. (15) is considered, it has been demonstrated that py,(w)
describes a line, respect to the polarization w, in the complex plane
(Cloude and Papathanassiou, 2003). The region of all possible inter-
ferometric coherences has been referred to as the coherence region.
The shape and extend of this particular region has been considered
by several authors in order to retrieve useful information to charac-
terize the target under observation (Tabb et al., 2002; Neumann
et al., 2006).

Given the RVoG model Eq. (13), the goal is to invert this model
on Pol-InSAR data according to Eq. (4), in order to retrieve those
parameters quantitatively that may characterize the forest under
observation, primarily the forest height h, and the ground topogra-
phy ¢¢ (Cloude and Papathanassiou, 2003).

2.2. Speckle noise model in Pol-InSAR data

As indicated in Eq. (5), the six-dimensional covariance matrix
must be estimated from data to reduce speckle noise. As a result,
the speckle filtering process shall affect the retrieved interferomet-
ric coherences, and under the assumption of the RVoG model, the
retrieved physical forest parameters. Thus, one of the objectives

of this work is to demonstrate that the assumption of the multipli-
cative—additive speckle noise model helps to improve the quantita-
tive estimation of the physical information.

All the elements of the Pol-InSAR covariance matrix result from
the complex Hermitian product of two components of Eq. (3).
Hence, a noise model for the sample covariance matrix may be
obtained from a generalization of a speckle noise model for the
Hermitian product of two SAR images S,S;, where the subscripts
p and g take into account both the polarimetric and the interfero-
metric information. Under the Gaussian assumption, S,S; may be
modeled as (L6pez-Martinez and Fabregas, 2003)

S5pSq = YZuNenim €xp(igy) +(|p] — NeZn) exp(jy) + v (ar + jgi)
(16)

where
T 11
Ne=Z1pbF (5 332 10T a7)

and 2F; (a, b; ¢; z) is the Gauss hypergeometric function. We redirect
to (Lopez-Martinez and Fabregas, 2003) for a detailed description
concerning the parameters of the previous model. The term n,,
refers to the speckle noise component presenting a multiplicative
noise behavior regarding the information of interest. The term
ngr + jn, represents the complex speckle noise component present-
ing an additive nature with respect to the information of interest.
Eq. (16) expresses that speckle noise for S,S; results from the com-
bination of multiplicative and complex additive noise components
which is determined by the complex correlation coefficient p that
characterizes S,S,. The model Eq. (16) may be extended to all the
elements of the covariance matrix Z. For the diagonal elements, it
reduces to the classical multiplicative model for the intensity. For
the off-diagonal elements, speckle results from the combination of
multiplicative and complex additive noise components.

2.3. Model-based Pol-InSAR filter

Based on the previous multiplicative-additive speckle noise
model, a new speckle filtering technique for Pol-InSAR data,
referred to as MBPolInSAR filter, for Model Based Pol-InSAR filter,
is now introduced. This filter follows the principles introduced in
Lépez-Martinez and Fabregas (2008). As indicated, in the case of
the diagonal elements, the model reduces to the multiplicative
speckle noise model for the SAR image intensity. Hence, the filter-
ing of these terms may be performed with a filtering technique
aiming at reducing multiplicative noise sources. This is not the case
for the off-diagonal elements, where speckle results from the com-
bination of multiplicative and complex additive speckle noise
sources, which combination is determined by p. As a result, the
speckle noise filtering process for these elements will be optimized
if both noise sources are considered.

The processing of the diagonal elements of the covariance
matrix is performed via any of the alternatives presented in the lit-
erature that consider multiplicative noise, see Fig. 1. The properties
of the filter will determine the final properties of the retrieved
data, specially in terms of spatial resolution. In the implementation
of the MBPolInSAR filter proposed in this section the diagonal ele-
ments will be filtered out with the multilook filter, as its simplicity
allows a quantitative evaluation of the filter performance.

Filtering
\S,,\z = multiplicative

noise

— E{IS,[*}

Fig. 1. Processing chain of the MBPoISAR filter for the diagonal elements of Z.
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The information contained in the off-diagonal elements of Z is af-
fected by multiplicative and complex additive speckle noise sources.
The MBPolInSAR filtering approach provides, as a novelty, a proce-
dure to filter both noise sources. Eq. (16) states that the combination
of the multiplicative and the additive speckle noise sources is
determined by p. Since p differs among the different off-diagonal
elements, the reduction of the multiplicative and the complex
additive speckle noise terms must be adapted to each element. Thus,
the first step to filter the off-diagonal elements is to estimate p. Also
in this case, and with the objective to perform a quantitative evalu-
ation of the MBPolInSAR filtering approach properties, a multilook
filter with the same averaging level employed to filter the diagonal
elements shall be considered. Once estimated, p is first transformed
to N.exp(¢,) via Eq. (17), and then the result is multiplied by the
single-look amplitude z = [S,S,|. At this point, it is possible to
generate the first additive term of Eq. (16). In order to retrieve the
correct mean value of 5,S;, this product needs to be compensated
for parameter B. Given the complex correlation coefficient p,
previously estimated, B may be straightforwardly estimated via

16 1 1 2 11 )
B2 (2 (~3 571007 o (5532 0T ) (18)

and applied to generate the product zN.Bexp(¢,). At this stage of
the processing chain for a particular element of Z, the last step to
perform is to filter out the multiplicative speckle noise term n,, with
the same approach employed to filter the diagonal elements.

The process presented in the previous paragraph is detailed in
Fig. 2. After filtering the multiplicative noise component, an im-
proved estimation of the numerator on the righthand side of Eq.
(1) is available. Thus, it is possible to improve the estimation of
p, that may be employed to filter the complex additive and multi-
plicative speckle noise components. As shown in Fig. 2, the new va-
lue of p is reintroduced in the filtering process, making it an
iterative process. It is important to highlight that when iterated, fil-
tering is applied to the original non-filtered data, i.e., S,S;. Thus, the
original noise model Eq. (16) is valid through the different itera-
tions. The iterative procedure only affects the estimation of p, in
the way that the better the estimation, the better the separation
of the speckle noise components.

3. Results

This section focuses on the quantitative evaluation of the
MBPolInSAR filter detailed in Section 2.3 in terms of the statistical

E{IS,[*} E{IS,*} Spsy
(U‘ 2 ¢ { ‘
Iple/® 15,84
— S I
N,/ = X
L B

o # # > Filtering

multiplicative
noise

-4 |p‘€f¢x - — - — -~ —

Fig. 2. Processing chain of the MBPoISAR filter for the off-diagonal elements of Z.

properties of the filtered Pol-InSAR data, but primarily in terms of
the retrieved forest height h, and ground phase ¢q, when consider-
ing the RVoG scattering model. An accurate evaluation of the filter-
ing performance based exclusively on experimental Pol-InSAR data
presents severe problems, since it would be practically impossible
to uncouple the filtering effects from the possible inaccuracies of
the coherent model to fully represent the scattering process. It is
also worth noting that when considering h, and ¢ the determina-
tion of the performance of any filtering approach is also affected by
the inversion algorithm itself. Nevertheless, if this inversion proce-
dure is constant over the complete evaluation process, one may
analyze the effects of the filtering approach on the parameters h,
and ¢o.

3.1. Evaluation based on simulated Pol-InSAR data

The simulation of Pol-InSAR data for vegetated areas may be
performed using different approaches, under the limitation that
this simulation must be coherent in order to make possible the
use of the phase information. The simulation considered here con-
sists of a stochastic simulation. As indicated in Section 2, the target
vector Kk is distributed according to a multidimensional, zero mean,
complex Gaussian pdf. Therefore, a non-correlated k vector is first
generated, which is subsequently correlated according to the RVoG
scattering model, from where h, and ¢ are inverted (Cloude and
Papathanassiou, 2003). Since data are simulated according to the
scattering model on which the inversion procedure for h, and ¢q
is based, any deviation of the retrieved information from the nom-
inal or true values may be basically attributed to the speckle noise
filtering process. In order to construct C, it is also necessary to
specify the geometry of the acquisition system. For instance we
use parameters of the L-band DLR E-SAR system considering two
parallel horizontal tracks, see Table 1. Under this geometry, a par-
ticular scenario of a vegetated terrain is assumed, according to the
RVoG model. The volume contribution is simulated according to
the following coherency matrix

1. 0 0
T,=0125/0 025 0 (19)
0 0 025

considering a height of h, =20 m. The ground contribution consid-
ers a flat, rough, loamy terrain with 2.2% water content simulated
according to the X-Bragg rough surface scattering model (Hajnsek
et al,, 2003), as specified in Table 2. Both scattering contributions
are related with a ground-to-volume ratio of —5 dB. The different
Pol-InSAR simulated datasets employed in the following will follow
the previous scenario, considering four different horizontal baseline
values of 5, 10, 15 and 20 m, with the corresponding k, parameters
of 0.064, 0.129, 0.194 and 0.259 rad/m, respectively.

If one pays attention to Eq. (13), it may be observed that the
RVoG model relies on all the information contained within Kj,.
Consequently, it is necessary to determine whether the MBPolIn-
SAR filter, and the multiplicative-additive speckle noise model it
is based on, are able, or not, to maintain the information contained
in K;,, and by extension C. Considering the RVoG model, it may be
affirmed that maintaining the information contained within C, is

Table 1

Flight geometry for simulated Pol-InSAR data.
Range spatial resolution 1.5m
Azimuth spatial resolution 1.5m
Wavelength 4 0.23m
Flight height H 3000 m
Mean incidence angle 6, 45 deg
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Table 2

Parameters of the surface scattering contribution of the RVoG
coherent scattering model for simulated Pol-InSAR data according to
the X-Bragg model.

Roughness f; 5 deg
Ground-to-volume ratio u -5dB
Relative permittivity &, 35

Ground phase ¢o 0 deg

equivalent to preserving the nature of the RVoG model, i.e., Eq. (13)
describes a line in the complex plane as a function of polarization.

Different works (Tabb et al., 2002; Neumann et al., 2006) have
already demonstrated that the first effect of speckle noise on Pol-
InSAR data, under the assumption of the RVoG model, is that inter-
ferometric coherence does no longer describe a line as a function of
polarization, but a region, called coherence region, that is close to
the theoretical line. In order to test the MBPolInSAR filter, the set of
simulations described before are now considered. Fig. 3 represents
the coherent regions corresponding to point samples of the differ-
ent data sets employed in the simulation, parameterized by B. A
first analysis shows that the MBPolInSAR filter preserves the origi-
nal nature of the data. The effect of the MBPolInSAR filter on high
coherence data, i.e., B=5 m, does not differ too much from the re-
sults obtained with the standard multilook filter, as the variance
associated to the complex additive speckle noise component is
negligible. This is not the case as B increases, since more decorre-
lation is introduced as a consequence of the larger spatial separa-
tion. As one may observe, the larger the baseline, the more
evident the correction induced by the MBPolInSAR filter as a con-
sequence of the larger importance of the additive speckle noise
component.

The following test, detailed in Fig. 4, describes the behavior of
the MBPolInSAR filter in terms of the RVoG model, as a function
of the dimension of the multilook filter employed to remove the
multiplicative speckle noise component and the number of itera-
tions to process the off-diagonal elements of Z. This analysis only
considers the B= 15 m data set, where the coherence regions also
correspond to point samples. In all cases, the MBPolInSAR filter is
able to retain the information contained in the data without intro-
ducing any artifact. As expected, the larger the filter, the higher the
reduction of speckle noise. In every case, the coherence regions
derived from data filtered with the MBPolInSAR filter considering

270

Fig. 3. Coherent regions obtained from simulated data filtered with a 9 x 9
standard multilook (---) and a 9 x 9 3 iterations MBPolInSAR (- -) method. Solid
lines represent the theoretical variation of coherence with polarization. Angle is
expressed in degrees.

one, two and three iterations are also included. The arrows indicate
the sense of increasing iterations, in the way that the higher the
iterations, the closer the coherence region to the theoretical line.

The qualitative analysis of the coherence regions allows to ob-
serve the filtering performances of the MBPolInSAR approach. Nev-
ertheless, a quantitative evaluation in terms of the retrieved
coherence regions, is very complex as there is no quantitative
way to evaluate and compare the retrieved coherence regions.
Therefore, it is necessary to determine how this improvement in
the estimation of the coherence regions, with respect to the multi-
look case, translates into the physical parameters h, and ¢q; and
then, to perform a quantitative evaluation of the proposed filtering
technique. For this purpose, the inversion algorithm proposed in
Cloude and Papathanassiou (2003) to invert forest parameters is
considered. These physical parameters correspond to the ground
topography ¢ and the forest height h,. Fig. 5 details the statistical
properties of the ground topography ¢, whereas Fig. 6 shows the
same analysis, but for the forest height h,. The evaluation of the
information provided by the previous figures must be carefully ad-
dressed since these correspond only to the different moments of
the pdf of the retrieved values. This information is complemented
by the histograms provided by Figs. 7-9.

The first step in the inversion algorithm provided in Cloude and
Papathanassiou (2003) is to retrieve the ground phase phig from
the crosses of the regression line, obtained from the estimated
coherency values, and the unit circle. The ambiguity regarding the
ground phase, since the line crosses the unit circle at two points, is
broken based on a physical interpretation of the coherency values
(Cloude and Papathanassiou, 2003). This ambiguity explains, for in-
stance, the local maximum close to the value ¢ = /2 rad on Figs. 7
and 8. One may observe that the presence of this maximum disap-
pears, in the case of the multilook filter, as we increase the dimension
of the filter. For the MBPolInSAR filter case, and a fixed dimension for
the multilook filter, 5 x 5 pixels in the case of Fig. 8, the local maxi-
mum decreases as the number of iterations of the filter is increased.
The reduction of this phase ambiguity is a direct consequence of the
improvement of the filtering performance. A second important
observation on Figs. 7 and 8 is the fact that the distribution of the
phase around the main maxima in ¢g = 0 rad is non symmetric. This
asymmetry disappears if the number of looks or the number of iter-
ations in the case of the MBPolInSAR filter are increased. Again, this
effect disappears as a result of the improved data filtering process.
Retaining these two important observations in mind, one may con-
sider now the analysis of Fig. 5. From the curves corresponding to
the mean value, two behaviors are observed. On the one hand, the
values of ¢q retrieved from data filtered with the MBPolInSAR ap-
proach are better than those obtained with the multilook approach.
The analysis of the standard deviation curves supports this conclu-
sion, as the standard deviation decreases as the filtering strength
increases. The standard deviation curves also show that the MBPo-
1InSAR filter estimates ¢o with a lower standard deviation than the
multilook approach for the same dimensions of the multilook filter.
Finally, one may observe that the estimation employing the MBPo-
1InSAR technique, compared with the standard multilook approach,
improves with the baseline B since, as mentioned before, the
additive speckle noise component increases as a consequence of
the larger decorrelation.

As it has been shown, the pdf of the retrieved topographic phase
¢o has a complex form that presents a clear dependence on the
speckle filtering process. As it may be concluded, the topographic
phase, where speckle is filtered using a Multilook or a MBPolInSAR
approach and the inversion process is based on the RVoG scattering
model (Cloude and Papathanassiou, 2003), presents an clear
asymptotic non-biased behavior. The sense of this bias is more dif-
ficult to establish, as overestimated and underestimated results
have been observed.



602 C. Lopez-Martinez et al./ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 597-607

180

210

0.6 0.6
0.4 ) 0.4

0.2

180

210

(a) 3x3

(b) 5x5

(c) 99

Fig. 4. Coherence regions obtained from simulated data filtered with a standard multilook (---) and the MBPolInSAR approach (- -). In each case, the dimensions of the
multilook filter are indicated. The MBPolInSAR filter has been applied with one, two and three iterations. The arrows indicate the sense of movement of the coherence region
for increasing scales. Solid lines represent the theoretical variation of coherence with polarization.
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Fig. 5. Mean and standard deviations of the retrieved ground topography for
different filtering levels and different baselines. The abscissa axes correspond to the
dimension of the multilook filter and the multilook filter within the MBPolInSAR
approach to reduce the multiplicative speckle component. Standard multilook (x), 1
iteration MBPolInSAR (x), 2 iterations MBPolInSAR (0J), 3 iterations MBPolInSAR
().

The second step in the inversion algorithm provided in Cloude
and Papathanassiou (2003) corresponds to the retrieval of the for-

Fig. 6. Mean and standard deviations of the retrieved forest height for different
filtering level and different baselines. The abscissa axes correspond to the
dimension of the multilook filter and the multilook filter within the MBPolInSAR
approach to reduce the multiplicative speckle component. Standard multilook (x), 1
iteration MBPolInSAR (x), 2 iterations MBPolInSAR (), 3 iterations MBPolInSAR
().

est height h,. Fig. 6 contains the mean and the standard deviation
values for the different configurations considered in the paper,
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Fig. 7. Retrieved ground topography histograms with simulated data (B=10m)
filtered with 3 x 3 standard multilook (=), 5 x 5 standard multilook (- =), 9 x 9
standard multilook (- ).
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Fig. 8. Retrieved ground topography histograms with simulated data (B =10 m)
filtered with 5 x 5 standard multilook (—), 5 x 5 1 iteration MBPolInSAR (- -), 5 x 5
3 iterations MBPolInSAR (- -).

whereas Fig. 9 shows the corresponding histograms for some par-
ticular configurations. The histograms in Fig. 9 detail a comparison
of the height values retrieved from data filtered with a 9 x 9 mul-
tilook and the MBPolInSAR filter employing the same averaging le-
vel with one and three iterations. The height values obtained with
data filtered with the MBPolInSAR filter are more centered around
the theoretical value, i.e., h, = 20 m, than those obtained with the
multilook filter. Fig. 9 also demonstrates the effect of the MBPolIn-
SAR filter as a function of B. An increase of the baseline induces
more decorrelation in the data, that is, it produces an increase of
the standard deviation of the real and imaginary parts of the addi-
tive speckle noise component. Consequently, the effect of the MBP-
olInSAR filter is more evident for large baselines. The shape of the
distributions, together with the standard deviation values detailed
in Fig. 6, shows the improvement in the height estimation process
with data filtered with the MBPolInSAR approach. The reduction in
the standard deviation is evident, independently of the multilook
filter size within the MBPolInSAR filter to reduce the multiplicative
speckle noise component. In addition, the larger the number of
iterations, the higher the reduction of the standard deviation. Nev-
ertheless, it is important to notice the disappearance of this bias as
the number of samples to reduce the speckle noise is increased. All
the previous observations allow to consider now the results de-
tailed in Fig. 6. As one may observe, the MBPolInSAR approach is
able to improve the estimation of the forest height by obtaining
a mean value closer to the actual one and estimating it with a low-
er standard deviation for any baseline value, comparing it with an
equivalent multilook approach.

In relation with the results found in the case of the topographic
phase, the estimation of the forest height, under the same condi-
tions, may also be defined as asymptotically non biased. Also in
this case, the different results that have been found do not give
enough evidence to determine the sense of this bias and its depen-
dence on the data.

The last aspect that is considered in this section is the capability
of the MBPolInSAR filter in order to maintain the spatial resolution.
In order to test it, two new data sets with a spatial baseline of 10 m
have been generated. The first data set simulates a background for-
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Fig. 9. Retrieved height histograms with simulated data filtered with standard
9 x 9 multilook (=), 9x9 1 iteration MBPolInSAR (---), 9 x9 3 iterations
MBPolInSAR (- -).

est with a height of 10 m and a small patch with a height of 20 m.
The second data set simulates the opposite situation. Data have
been processed with a 5 x 5 multilook filter, a 5 x 5 multilook fil-
ter iterated three times for comparison purposes and the MBPolIn-
SAR approach considering the 5 x 5 multilook filter and iterated
three times. Fig. 10 plots a profile of the retrieved height for every
data set, where the patches are theoretically located between pix-
els 50 and 65. Both profiles show that, despite the iterative nature
of the MBPolInSAR filter, the resolution with which forest height is
retrieved is close to the one of the standard multilook. It is worth to
notice that in the current implementation of the MBPolInSAR filter,
spatial resolution maintenance has not been a main issue since the
objective is to prove the performance of the filtering approach
itself. Obviously, the spatial resolution would be improved if with-
in the MBPolInSAR filter the multilook filter is substituted with an
improved filtering technique.

3.2. Evaluation based on real Pol-InSAR data

The real data employed in this work are part of the second Indo-
nesian Airborne Radar Experiment (INDREX-II), conducted in 2004
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Fig. 10. Spatial resolution properties. (—) 5 x 5 Multilook, (---) 5 x 5 3 it. Multilook,
(- =) 5 x 5 3 it. MBPolInSAR.

on the Kalimantan island of Indonesia (Hajnsek et al., 2005). The
objective was to conduct an extensive measuring campaign to sup-
port the development and validation of quantitative parameter
estimation techniques from multidimensional SAR data on tropical
and sub-tropical forest regions. The acquisition process was per-
formed with the DLR’s experimental airborne SAR system (E-SAR)
in November and December of the same year. Additionally, in Au-
gust 2007, a Lidar measurement campaign was conducted on the
same areas imaged in 2004 in the INDREX-II campaign context.

The INDREX-II campaign considered two main test areas that
covered the main broad forest types, where data at X-, C-, L- and
P-band were acquired. Nevertheless, only a subset of the complete
data set acquired in the mission shall be considered. The area con-
sidered in this study corresponds to the Mawas test site, located in
central Kalimantan, Indonesia. The area presents a relatively flat
area covered by a tropical peat swamp forest types where forest
height ranges from 15 to 30 m, and biomass levels in the range
of 20-250 t/ha. The evaluation of the filtering approach developed
previously shall be performed considering three PolSAR acquisi-
tions, making possible to construct two Pol-InSAR data sets with
baselines of 15 and 30 m, see Table 3. Fig. 11 shows the Span image
of the master image, labeled 1402, that shows the homogeneity of
the studied forest.

For the data sets indicated in Table 3, Lidar measurements were
performed with a spacial resolution in the range of 2-3 m. The def-
inition of forest height is not unique. In addition, the forest height
that may be retrieved from SAR or Lidar data depends, of course, on
the morphology of the forest that determines the penetration capa-
bilities of the microwave or the optical radiations. Nevertheless, it
has been shown that the forest height retrieved from Pol-InSAR
data closely matches the so-called hqoo height (Mette et al.,
2004), that corresponds to the average height of the 100 tallest

Fig. 11. Span image Indrex-II 1402 dataset. The framed sector corresponds to the
area of analysis.

tress per hectare. Consequently, the raw Lidar data has been pro-
cessed in order to derive an hqog on different segments of the Lidar
data set. This measure of h;go obtained from Lidar data shall be em-
ployed to validate the forest height inverted from experimental
Pol-InSAR data. In order to perform this quantitative evaluation,
only a 140 range-pixels x 1200 azimuth-pixels area is considered,
where SAR and Lidar data are available, see Fig. 11.

The Pol-InSAR data sets detailed in Table 3 have been processed
with a 9 x 9 multilook approach and the MBPolInSAR filter consid-
ering also a 9 x 9 multilook filter. In this case, three iterations have
been assumed. Fig. 12 presents the retrieved forest height h, and
the ground phase ¢y for the 1402-1405 Pol-InSAR data set,
whereas Fig. 13 shows these parameters for the 1402-1408 data
set. From a global and qualitative comparison of these results, both
filtering approaches result in similar retrieved parameters. Hence,
these results allow to establish the important conclusion that the
assumption of the multiplicative-additive speckle noise model
does not lead to a corruption of the retrieved physical parameters.
In order to support this conclusion, and in order to study the impli-
cations of the assumption of this speckle noise model, the results in
Figs. 12 and 13 are quantitatively analyzed in the following.

From Figs. 12 and 13, the analyzed area may be considered al-
most homogeneous in terms of forest height and ground phase.
Hence, the mean and the standard deviation values may be consid-
ered as a first tool to perform a quantitative analysis, see Tables 4
and 5. The mean forest height obtained from data filtered with the
MBPolInSAR approach is lower than the mean forest height from
data filtered with a multilook filter, which is in accordance with
the observations based on simulated SAR data. Thus, it is possible
to deduce that the forest height values obtained through the MBP-
olInSAR approach are closer to the actual values. The standard
deviation values also show the same behavior, demonstrating the
filtering performance of the MBPolInSAR technique over the multi-
look approach. The mean and standard deviation values corre-
sponding to ¢q also present the same behavior, allowing also to
support the efficiency of the proposed filtering technique.

Lidar measurements are available for the same area, that after a
processing step have been transformed into the h;go height for
different segments. The data considered previously cover approxi-
mately 30 segments of the complete Lidar data set. The comparison
of the height retrieved from Pol-InSAR data against the Lidar data
may be performed into two different ways. The first comparison
is a pixel-to-pixel comparison of the retrieved height from Pol-
InSAR data with the corresponding pixels of the Lidar data, despite
Lidar data represent only higo for different segments. This valida-
tion is performed via the histograms of the retrieved heights. These
results are depicted in Fig. 14a for the 1402-1405 Pol-InSAR data
set, whereas the results for the 1402-1408 data set are in
Fig. 15a. The second comparison makes reference to a segment-
to-segment comparison, performed through a regression, where
for every segment, the h;oo measure is compared against the mean
Pol-InSAR height derived in the same segment. Results are in
Fig. 14b and 15b, respectively. These results are complemented
with Table 5, where the mean and the standard deviation values
of the retrieved forest height, and its difference with the hgo Lidar
measurements defined as

Ah, =h, — higo (20)
Table 3
Indrex II P-band datasets.
Master Img. Slave Img. Baseline k, range
1402 1405 15m 0.03-0.13 rad/m
1402 1408 30m 0.06-0.26 rad/m
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Fig. 12. Retrieved height [m] and ground phase [rad] based on the acquisitions
1402-1405.

for the pixel-to-pixel and segment-to-segment comparisons are
presented for both data sets.

The histograms resulting from the pixel-to-pixel comparison of
the retrieved height inverted from Pol-InSAR data against the Lidar
data show first that the inversion approach proposed in Cloude and
Papathanassiou (2003) is able to retrieve the correct forest height.
A detailed analysis of the results makes evident that the forest
height values retrieved from data filtered with the MBPolInSAR ap-
proach are closer to the h;qo measurements as corroborated in Ta-
ble 5. As observed for both data sets, the mode of the histograms
for data filtered with the MBPolInSAR approach are closer to the Li-
dar measurements. It is worth to notice that in the case of the MBP-
olInSAR filter, the retrieved heights tend to be substantially lower
than in the case of the multilook approach. This behavior of the
height values obtained from data filtered with the MBPolInSAR ap-
proach are consequent with the morphology of the forest in the
Mawas test site, where heights are in the range of 15-30 m. The
second comparison has been performed in terms of the mean
height obtained for the 30 segments considered in this work. The
Lidar measurements correspond to the hqgo value for every seg-
ment, whereas for the same segment, the mean Pol-InSAR height
is computed. Results are reported in Figs. 14b and 15b and Table
5. In the case of the segment-to-segment comparison, the same
trends observed previously are obtained. For both data sets, the
use of the MBPolInSAR filtering approach results in lower height
values for all the segments of the study.

4. Discussions and conclusions

This paper has presented and validated the application of the
multiplicative-additive speckle noise model to define a filtering

h, MBPolInSAR filter
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Fig. 13. Retrieved height [m] and ground phase [rad] based on the acquisitions
1402-1408.

Table 4
Estimated topographic phase statistical evaluation in a pixel-to-pixel basis.
Data set Param. Mean Std. dev.
MLT MBPolInSAR MLT MBPolInSAR
1402-1405 ¢o [rad] 0.66 0.69 0.22 0.19
1402-1408 ¢o [rad] —-0.06 -0.12 0.28 0.21
Table 5

Estimated height from Pol-InSAR data compared with Lidar measurements, where px
represents the pixel-to-pixel and sg the segment-to-segment comparison,
respectively.

Data set Param. Mean Std. dev.
MLT MBPolInSAR  MLT  MBPolInSAR

1402-1405 h, px [m] 29.88 27.48 9.51 7.76

A h, px [m] 5.68 3.29 9.61 7.90

h, sg [m] 29.85 27.49 254 232

A hy, sg [m] 5.65 3.30 292 281
1402-1408 h, [m] 27.10 24.97 9.70 7.06

A hy, px [m] 2.90 0.77 9.73 7.10

h, sg [m] 27.30 25.10 142 149

A hy, sg [m] 3.11 0.90 1.62 1.67

technique on Pol-InSAR data. The particularity of the performance
analysis conducted in this work is that the proposed filtering
approach has been tested in terms of the quantitative retrieval of
physical parameters. From a global perspective point of view, the
results demonstrate that to consider the multiplicative-additive
speckle noise model to process Pol-InSAR data does not lead to a
damage or to a loss of useful information, but it helps to improve
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Fig. 14. Validation of Pol-InSAR height for the 1402-1405 dataset. (a) Pixel-to-pixel
validation. (- --) MLT filter, (- —) MBPolInSAR, Lidar hyqo is in gray. (b) Segment-to-
segment validation. (+) MLT filter, (o) MBPolInSAR.
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Fig. 15. Validation of Pol-InSAR height for the 1402-1408 dataset. (a) Pixel-to-pixel
validation. (---) MLT filter, (- —-) MBPolInSAR, Lidar hyqp is in gray. (b) Segment-to-
segment validation. (+) MLT filter, (o) MBPolInSAR.

the estimation process. The key reason of this improvement must
be found in the fact that the MBPolInSAR filtering approach consid-
ers specifically the additive speckle noise component affecting the
off-diagonal elements of the sample covariance matrix. As it is
shown in previous works, and also made evident in this paper, to
consider this speckle noise component explicitly improves the
information estimation process for those areas characterized by
low correlation coefficients, as the variance of the additive speckle
noise component increases when decreasing the coherence values.
Another global conclusion that may be extracted, despite already
demonstrated by other authors, is the validity of the use of Pol-
InSAR data for the quantitative retrieval of forest parameters based
on a coherent modeling.

The use of simulated Pol-InSAR data to evaluate the MBPolIn-
SAR filtering approach and to compare it with the multilook filter-
ing technique has demonstrated that for the same level of spatial

averaging, the MBPolInSAR approach outperforms the multilook
approach. It has been shown that the forest height and the topo-
graphic phase biases, regarding the actual values, are reduced for
any measuring condition, together with a reduction of the standard
deviation value. This improvement on the forest height estimation
increases with the baseline, as coherence decreases with baseline.
The previous observations have also been corroborated by consid-
ering the use of real P-band Pol-InSAR data, where Lidar measure-
ments have been considered as a ground truth.

The retrieval of the forest height and the topographic phase, as
indicated, depends on the process employed to remove speckle
noise. But this retrieval process depends also on the electromag-
netic inversion process. An estimation process based on multilook
or MBPolInSAR approach followed by the inversion process pre-
sented in Cloude and Papathanassiou (2003), based on the RVoG
coherent scattering model, results in asymptotically non-biased
estimations of the forest height and the topographic phase. This
conclusion is supported by the analysis of simulated, as well as
by the analysis of real Pol-InSAR data and its comparison with
Lidar measurements. Finally, an analytical analysis should be nec-
essary to study these effects.
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